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Correction and Interpretation of Fourier Coefficients of X-ray Diffraction
Patterns from Very Small, Distorted Crystals

By D. H. Kosg*
Hanford Laboratories, Richland, Washington, U.S. A.

(Received T October 1959)

This paper presents a method for correcting the Fourier coefficients of (00!) X-ray diffraction
patterns from powders of very small, distorted crystals to take into consideration a function of the
diffraction angle that should multiply the Fourier series. The function, which is usually assumed
constant, is the product of the crystal structure factor, the polarization factor, and the Lorentz
factor, and can vary greatly over the diffraction peak in some cases. The corrected coefficients
must then be separated into the particle size coefficients and the distortion coefficients. A method
for obtaining the discrete particle size distribution function directly from the particle size coefficients
is presented. The distortion coefficients are used to determine the moments of the distortion, from
which the probability density functions for the distortion can be obtained by means of a Gram—

Charlier series.

Introduction

An equation has been derived (Warren & Averbach,
1950) which expresses the power diffracted in an (00!)
diffraction pattern from a powder of very small,
distorted crystals as a function of diffraction angle.
The function is in the form of a Fourier series

plr)=g(x) X Cnpexp (—2minx), (1)
where z=2a sin 0/
and g(x)=K|F[2(1 +cos? 20)/2 sin® 0 . @)

The angle 0 is the diffraction angle, a is the interplanar
spacing in the (00]) direction, A is the wavelength of
the X-rays, F is the crystal structure factor, and K
is a constant. The factor (1+cos? 26§)/2 in equation (2)
is the polarization factor and 1/sin? 6 is the Lorentz
factor. Because of the Lorentz factor, ¢(x) is a very
rapidly varying function at small angles.
The coefficient O can be written as

On:'Aan(l) ) (3)
where
Au=(110) 3 (j—nl)ym (4)
j=n]+1
and
Ba(l)={exp (—2milZy)) . (5)

The term J is the average number of cells per column,
my is the fraction of columns with j cells, and a(n+Z»)
is the distance between two points n cells apart, all
in the (00l) direction. The angular brackets denote an
average with respect to Z, over the sample. From
equations (3), (4), and (5) it can be seen that Co=1.
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Correction of the coefficients for the
multiplying function
If the value of q(z) at the middle of the interval is
used, equation (1) becomes

p(x)=4g(l) _E' D exp (—2mimz) . (6)

The coefficients D, are obtained from the observed
diffraction peak and the instrumental broadening
function by the method of Stokes (1948). The variation
of g(x) over the diffraction peak will cause the co-
efficients D to differ from C, with the amount of
difference dependent on the slope of the function ¢(z).

Equating equation (1) and (6), and dividing through
by g(z) gives

g Cn exp (—2minz)

N=—00

=[q()/g(x)] = Dmexp (—2mima). (7)
m=—0
Now the function g¢(I)/g(x) may be expanded in a

Fourier series

a0fale) = 3 Quexp (~2aike) . ®)

If equation (8) is substituted into equation (7) the
result is

2 Crpexp (—2minx)
n=—00

— 3 3 QuDmexp[—2nitk+m)z]. (9)

k=—00 m=—0c0

Now let n=k+m, so that k=n—m. Then equation (9)
becomes
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2 Cr exp (—2minx)

n=—0o0

= 3‘0 E Qn—mDm exp (—2minz) .

Nn=—00 M=—00

(10)

Since a Fourier series is unique, the corresponding
coefficients in equation (10) can be equated

Cr = 2 Qn—mDm .

m=—00

(11)

Therefore, to obtain the corrected coefficient C.,,
equation (11) shows that an infinite sum must be
performed. In practice, it is only necessary to sum until
the desired degree of convergence is obtained.

Since all the terms in equation (11) are complex,
it may be broken into its real and imaginary parts.
If the real and imaginary parts of the coefficients are
denoted by the superscripts » and 7 respectively,
we have

Cr= 2 (QrnDn—QinDr) (12)
Ci= 2 (@i nDnt+QhnDh) . (13)

Now from the definition of the Fourier coefficient for
a real function, D_,,=D}. Therefore, equations (12)
and (13) may be rewritten to give

Crh= @D+ 2 (Qrnt@rin)Dr
m=1
. . e . . -
- Ds+ 21(—Q;_m+Q;+m)D:n- (14)
Ci= @QDi+ = (@nn+Qhim)Dr
m=1

+@Q.D§+ ZI(QZ_m—QZ+m)Dfn- (15)
In practice, these equations can be simplified since
Dy=1 and D}, are generally small. It is now only
necessary to determine the coefficients @i to enable
the corrected coefficients to be calculated from
equations (14) and (15).

The coefficient Qx in equation (8) is
+3 .
%[q(l)/q(x)] exp (2nikx)dx .
-
Now the function ¢(I)/g(x) may be approximated by
a polynomial

Qi = S (16)

q()/q(x) = ox®+ B +y . (17)

Substituting equation (17) into equation (16) and per-
forming the integration gives

o -{

where

(oo(— 1)¥/27%k2] +- il s( — 1)¥/k],
1+(/12),

s=—[al+(B/2))/ -

E+0
k=0

CORRECTION AND INTERPRETATION OF FOURIER COEFFICIENTS

A higher order polynomial may be used to obtain a
better approximation.

It may be asked why the observed diffraction peak
f(z) cannot be divided directly by g(x) and then cor-
rected for the instrumental broadening function g(z).
This procedure may be satisfactory when the instru-
mental broadening is very small, or ¢(x) is a very
slowly varying function. However, in general, this
procedure is not mathematically justifiable because of
the form of the convolution integral for instrumental
broadening (Jones, 1938)

)= §

If equation (1) is substituted into equation (18), the
function ¢(y) cannot be taken outside of the integral
unless it is a constant. If g(x—y) is a delta function,
the integral reduces to p(z). Equations (14) and (15)
should be used in cases where g(x) changes appreciably
over the pattern or the instrumental broadening is
important.

oo

p(y)gx—y)dy . (18)

—o0

Interpretation of particle size coefficients

Once the coefficients C(l) have been obtained, each
of them can be separated into the corresponding A,
and By(l) if more than one order of reflection has been
measured (Warren & Averbach, 1952). It will be
assumed in the rest of this paper that the separation
can be made, or that 4, or B, is unity for all =.

Previous workers (Bertaut, 1949; Warren & Aver-
bach, 1950) have introduced a continuous particle size
probability density function, and replaced the summa-
tion in equation (4) with an integration. If » is as-
sumed to be a continuous variable, the particle size
probability density function is proportional to the
second derivative of A,. A more direct and mathe-
matically simpler method has been found by using
equation (4) directly, which yields the physically
more meaningful discrete particle size distribution
function.

Equation (4) may be rewritten in the form

[+ n
An = (l/J),Z; (J— Inlym;—(1/J) Zl(j— |n])m; . (19)
I= 1=

Now by definition of m; we have

2m,~=1
j=1
and
o
Sjimy=J .
j=1

Therefore equation (19) becomes

In}
An=1—(In[/J)+(1/J).21(lnl—j)m:- (20)
j=
Without making any assumptions J may be calculated

by setting n=1 in equation (20)

Ar=1—(1}J) (21)
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since the coefficient A; is known. However, unless
very accurate data are used, this equation may not
be applicable because of the error in the coefficients
for small 7 caused by inaccurate measurement of the
tails of the diffraction peak (Eastabrook & Wilson,
1952).

The terms m; may be calculated from equation (20).
Let

on-1=J(4dn—1)+n|, (22)

which can be calculated from the coefficients. Sub-
stituting equation (20) into equation (22) gives

nl

an-1= 2 (In]—j)m; . (23)
=1

The set of equations representated in equation (23)

may be written out

x1=m1

o2 =2m1 +ms

&g =3my + 2mz +m3
...... (24)
Equation (24) may easily be solved consecutively for
the unknowns m;. The distribution function for the
particle size is

[¥]

F(y) = ’Elmk , (25)

where [y] denotes the largest integer less than y.
If F(y) is plotted against y, a discrete distribution
function will result. If equation (25) does not correlate
the data in a physically meaningful way, either the
data are not sufficiently accurate or equation (1) is
not applicable to the problem.

Interpretation of distortion coefficients

From the distortion coefficients in equation (5), the
moments of the distortion indices Z, may be obtained.
The probability density function for Zn, Pr(Zs), can
be determined from the moments by means of a
Gram-Charlier series. This method provides a means
for obtaining an approximate probability density func-
tion, even if only one or two orders are measured.
The other method (Warren & Averbach, 1950) for
obtaining the distortion probability density functions
requires that [ be assumed to be a continuous variable
and that enough orders are measured to determine
Bu(l) as a function of I between zero and infinity.
It is generally difficult to obtain this many orders.

The coefficient B, in equation (5) can be written
as follows

B (l)={cos (2alZy,)y—1 (sin 2alZa)y .  (26)
Equating the real and imaginary parts of equation (26)
and expanding the trigonometric functions in a Mac-
laurin series gives
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2y 2yt
ReBn(l)=1—(—;—)(Zf,>+( Z!) (= ... @)
ImBu(l)= —2al(Zn) + (2;’?3 (Z—.... (28)

If m orders are measured in the (00!) direction,
equation (27) and (28) may each be solved for m
moments. Therefore, the moments through {(Z;™) can
be calculated.

These moments may now be used in a Gram-—
Charlier series (Rietz, 1927) to give the probability
density function for the distortion indices. The density
function for the nth distortion index is

Pu(Z) = i {1 +,§;$ <Hk (Z—U<Z>>>
o B
A

<Hk (ZL—U—EZ—’O» = S:Hk (Z—_%Z”Q) P.(2)dZ .

The function Hy(y) is the Hermite polynomial, which
is defined as

k(1) (k—2) (k—3)
+ 2x4

k—4

The angular brackets again denote the expected value.
Equation (29) reduces to the Gaussian density function
if only the first and second moments are used. In
practice, probably no more than four or five orders
can be measured, so that the maximum value of k
in equation (29) will be eight or ten.
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