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This paper presents a method for correcting the Fourier coefficients of (00/) X-ray diffraction 
patterns from powders of very small, distorted crystals to take into consideration a function of the 
diffraction angle tha t  should multiply the Fourier series. The function, which is usually assumed 
constant, is the product of the crystal structure factor, the polarization factor, and the Lorentz 
factor, and can vary  greatly over the diffraction peak in some cases. The corrected coefficients 
must  then be separated into the particle size coefficients and the distortion coefficients. A method 
for obtaining the discrete particle size distribution function directly from the particle size coefficients 
is presented. The distortion coefficients are used to determine the moments of the distortion, from 
which the probability density functions for the distortion can be obtained by means of a Gram-  
Charlier series. 

Introduct ion 

An equat ion has been derived (Warren  & Averbach,  
1950) which expresses the  power diffracted in an (00/) 
diffract ion pa t t e rn  from a powder of ve ry  small, 
d is tor ted crystals  as a funct ion of diffraction angle. 
The funct ion is in the form of a Fourier  series 

(30 

p(x)=q(x) 27 C n e x p  ( - 2 ~ i n x )  , (1) 
n ~ - - - ~  

where 
x =  2a sin 0/~ 

and 
q(x) = KIF[2(1 + cos 2 2 0)/2 sin 2 0 .  (2) 

The angle 0 is the  diffraction angle, a is the  in terp lanar  
spacing in the  (00l) direction, ). is the  wavelength  of 
the  X-rays ,  F is the  crystal  s t ructure  factor,  and  K 
is a constant.  The factor  (1 + cos 9' 2 0)/2 in equat ion (2) 
is the polarization factor  and  1/sin 2 0 is the  Lorentz 
factor.  Because of the  Lorentz factor,  q(x) is a ve ry  
rapid ly  vary ing  funct ion a t  small  angles. 

The coefficient Cn can be wri t ten  as 

where 

and  

C~=AnB~(1) , (3) 

An=(1/J )  ~ ( j - l n ] )mj  (4) 
]=inI+l 

B,(/)  = (exp  ( -  2~ilZn)) .  (5) 

The te rm J is the  average number  of cells per column, 
mj is the  fract ion of columns with j cells, and  a(n + Zn) 
is the  distance between two points n cells apar t ,  all 
in the  (00/) direction. The angular  brackets  denote an  
average with  respect to Z~ over the  sample. F rom 
equations (3), (4), and (5) it  can be seen t h a t  Co= 1. 
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Correct ion of the coeff icients  for the 
m u l t i p l y i n g  funct ion 

I f  the  value of q(x) a t  the  middle of the  in terval  is 
used, equat ion (1) becomes 

c o  

p(x)=q(l) 27 Dm exp ( -27dmx)  . (6) 
m ~ - - - - o o  

The coefficients D ~  are obtained from the  observed 
diffract ion peak  and  the  ins t rumenta l  broadening 
funct ion by the  method  of Stokes (1948). The var ia t ion  
of q(x) over the  diffraction peak  will cause the  co- 
efficients Drn to differ f rom C,n, with the  amoun t  of 
difference dependent  on the  slope of the  funct ion q(x). 

Equa t ing  equat ion (1) and  (6), and dividing through 
by  q(x) gives 

c o  

C~ exp ( - 2 ~ i n x )  
n = - - O 0  

= [q(1)/q(x)] ~ D m exp ( - 2 7 d m x ) .  (7) 
m = - - ~  

Now the  funct ion q(l)/q(x) m a y  be expanded  in a 
Fourier  series 

c o  

q(1)/q(x) = 27 Q~ exp ( - 2 ~ i k x ) .  (8) 

I f  equat ion (8) is subs t i tu ted  into equat ion (7) the  
result  is 

c o  

2 :  Cnexp  ( -27dnx)  

(30 (30 

= 27 27 QkD~ exp [ - 2 ~ i ( l c + m ) x ] .  (9) 
k------OO m = - - C O  

Now let n = k + m, so tha t  k = n -  m. Then equat ion (9) 
becomes 
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c o  

~" Cnexp ( - 2 g i n x )  
n ~ - - o o  

o o  (~) 

= .~ Z,  Q,~-mDm exp ( - 2 u i n x )  . (10) 

Since a Fourier series is unique, the corresponding 
coefficients in equation (10) can be equated 

oo  

C n =  .X Q n - m D m .  (11) 
m = - - o o  

Therefore, to obtain the corrected coefficient C~, 
equution (11) shows that  an infinite sum must be 
performed. In practice, it is only necessary to sum until 
the desired degree of convergence is obtained. 

Since all the terms in equation (l l)  are complex, 
it may be broken into its real and imaginary parts. 
If the real and imaginary parts of the coefficients are 
denoted by the superscripts r and i respectively, 
we have 

oo  

C~= ~7 to~ r)~ o ~ D ~ (12) x ' ~ n - - m ~ m  - -  " ~ n - - m  m l  

o o  

i r r D i C ~ =  ._~ (Qn_mDm+Q,~_m m). (13) 
m = - - c o  

Now from the definition of the Fourier coefficient for 
a real function, D_m=D*~. Therefore, equations (12) 
and (13) may be rewritten to give 

i n ~" r r r c r  = QnDo + ~ (Qn-m -t- Qn+m)nm 
m = l  

oo 
i i i -4- i Q n D o + . , S (  Q~-m - - _ Qn+m)D~. 

m = l  

C~ i ~ i + i  QnDo-t - .,~ (Qn-m = Qn+,~)Dm 
m = l  

(14) 

oo  
r i r i + Q n n o +  .~ (Q~-m (15) -Q,~+m)Dm . 

m = l  

In practice, these equations can be simplified since 
Do--1 and Dim are generally small. I t  is now only 
necessary to determine the coefficients Q~ to enable 
the corrected coefficients to be calculated from 
equations (14) and (15). 

The coefficient Q~ in equation (8) is 

i 
t+½ 

Qk = ct_ [q(1)/q(x)] exp ( 2 ~ i k x ) d x .  (16) 

Now the function q(1)/q(x) may be approximated by 
a polynomial 

q(1)/q(x) = ~x~ + fix +:~ . (17) 

Substituting equation (17) into equation (16) and per- 
forming the integration gives 

{ [ ~ ( - 1 ) ~ / 2 ~ k 2 ] + i [ s ( - 1 ) ~ / k ] ,  k4-O 
Q~ = 1 + (~/12), k = 0  

where 
s =  - [ ~ +  (~/2)] /~.  

A higher order polynomial may be used to obtain a 
better approximation. 

I t  may be asked why the observed diffraction peak 
f (x)  cannot be divided directly by q(x) and then cor- 
rected for the instrumental broadening function g(x). 
This procedure may be satisfactory when the instru- 
mental broadening is very small, or q(x) is a very 
slowly varying function. However, in general, this 
procedure is not mathematically justifiable because of 
the form of the convolution integral for instrumental 
broadening (Jones, 1938) 

f (x)  = p ( y ) g ( x - y ) d y  . (18) 

If equation (1) is substituted into equation (18), the 
function q(y) cannot be taken outside of the integral 
unless it is a constant. If g ( x - y )  is a delta function, 
the integral reduces to p(x). Equations (14) and (15) 
should be used in cases where q(x) changes appreciably 
over the pattern or the instrumental broadening is 
important. 

Interpretation of particle size coefficients 

Once the coefficients Cn(1) have been obtained, each 
of them can be separated into the corresponding An 
and Bn(1) if more than one order of reflection has been 
measured (Warren & Averbach, 1952). I t  will be 
assumed in the rest of this paper that  the separation 
can be made, or that  An or Bn is unity for all n. 

Previous workers (Bertaut, 1949; Warren & Aver- 
bach, 1950) have introduced a continuous particle size 
probability density function, and replaced the summa- 
tion in equation (4) with an integration. If n is as- 
sumed to be a continuous variable, the particle size 
probability density function is proportional to the 
second derivative of An. A more direct and mathe- 
matically simpler method has been found by using 
equation (4) directly, which yields the physically 
more meaningful discrete particle size distribution 
function. 

Equation (4) may be rewritten in the form 
o o  Inl 

An = (l /J)  ~" ( j - l n [ ) m j - ( 1 / J )  ~ ( j - ] n ] ) m ~ .  (19) 
~ = 1  j = l  

Now by definition of mj we have 

o o  

~ m j = l  
j=l 

and 

Z j m j  = J . 
j=l 

Therefore equation (19) becomes 
I n l  

A n =  1 - ( I n l / J ) + ( 1 / J )  .~, ( I n [ - j ) m j .  (20) 
1 = 1  

Without making any assumptions J may be calculated 
by setting n = 1 in equation (20) 

A I = I - - ( 1 / J )  (21) 
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since the coefficient A1 is known. However, unless 
very  accurate da ta  are used, this  equat ion m a y  not  
be applicable because of the error in the coefficients 
for small  n caused by  inaccurate  measurement  of the 
tails of the diffraction peak (Eastabrook & Wilson, 
1952). 

The terms mj m a y  be calculated from equat ion (20). 
Let  

a n - ,  = J ( A n -  1) + In] , (22) 

which can be calculated from the coefficients. Sub- 
s t i tu t ing equat ion (20) into equat ion (22) gives 

I n l  

an-1 = Z ( ]n [ - - j )m j .  (23) 
j = l  

The set of equations representated in equat ion (23) 
m a y  be wri t ten out 

a l  ---- ml  
a2 = 2ml + m2 
as = 3ml + 2m2 + m3 
, , , . .  ° (24) 

Equat ion  (24) m a y  easily be solved consecutively for 
the unknowns mj. The dis t r ibut ion funct ion for the 
particle size is 

[y3 
F(y)  = Z m~ , (25) 

k = l  

where [y] denotes the largest integer less t han  y. 
If  F(y)  is plot ted against  y, a discrete dis t r ibut ion 
funct ion will result. If  equat ion (25) does not  correlate 
the da ta  in a physica l ly  meaningful  way, either the 
da ta  are not  sufficiently accurate or equat ion (1) is 
not applicable to the problem. 

Interpretation of distortion coefficients 
From the distort ion coefficients in equat ion (5), the 
moments  of the distort ion indices Zn m a y  be obtained. 
The probabi l i ty  densi ty  funct ion for Zn, Pn(Zn) ,  can 
be determined from the moments  by  means  of a 
Gram-Char l ie r  series. This method provides a means  
for obtaining an approximate  probabi l i ty  densi ty  func- 
tion, even if only one or two orders are measured.  
The other method (Warren & Averbach,  1950) for 
obtaining the distort ion probabi l i ty  densi ty  functions 
requires tha t  1 be assumed to be a continuous var iable  
and  tha t  enough orders are measured to determine 
Bn(1) as a funct ion of 1 between zero and infini ty.  
I t  is general ly difficult  to obta in  this m a n y  orders. 

The coefficient Bn in equat ion (5) can be wri t ten 
as follows 

B , ( / )=<cos  ( 2 u l S n ) > - i  <sin (2~/Z,)>.  (26) 

Equat ing  the real and imaginary  parts  of equat ion (26) 
and  expanding the tr igonometric  functions in a Mac- 
laur in  series gives 

(2~l) 2 (2zd) 4 
R e B n  (1) = 1 : - -4  V. "----- ----~.~ <Z~> + <Z~>-- . . . .  (27) 

(2~l) 3 
I m B n  (1) = - 2~l<Zn> + ~ <Z]>-  . . . . (28) 

If  m orders are measured in the (00/) direction, 
equat ion (27) and (28) m a y  each be solved for m 
moments .  Therefore, the moments  through <z2m> can 
be calculated. 

These moments  m a y  now be used in a G r a m -  
Charlier series (Rietz, 1927) to give the probabi l i ty  
densi ty  funct ion for the distort ion indices. The densi ty  
funct ion for the n th  distort ion index is 

1 [1 ~ l ( H k ( Z n - - - - < n Z n > ) )  

where 
o .=  [<z~>-<z.>~]~ 

and 

The funct ion Hk (y) is the Hermi te  polynomial ,  which 
is defined as 

k(k - 1) yk-2 
H~ (y) = yk 

2 
k ( k -  1 ) ( k - 2 ) ( k - a )  y~-4_ 

- - ~  . .  , . 

2 × 4  

The angular  brackets  again denote the expected value. 
Equa t ion  (29) reduces to the Gaussian densi ty  funct ion 
if only the first  and  second moments  are used. In  
practice, p robably  no more than  four or five orders 
can be measured,  so tha t  the m a x i m u m  value of k 
in equat ion (29) will be eight or ten. 
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